The 71st William Lowell Putnam Mathematical Competition Saturday, December 4, 2010

A1 Given a positive integer n, what is the largest k such that the numbers $1, 2, \ldots, n$ can be put into k boxes so that the sum of the numbers in each box is the same?

[When n=8, the example $\{1,2,3,6\},\{4,8\},\{5,7\}$ shows that the largest k is at least 3.]

A2 Find all differentiable functions $f: \mathbb{R} \to \mathbb{R}$ such that

$$f'(x) = \frac{f(x+n) - f(x)}{n}$$

for all real numbers x and all positive integers n.

A3 Suppose that the functions $h: \mathbb{R}^2 \to \mathbb{R}$ has continuous partial derivatives and satisfies the equation

$$h(x,y) = a \frac{\partial h}{\partial x}(x,y) + b \frac{\partial h}{\partial y}(x,y)$$

for some constants a,b. Prove that if there is a constant M such that $|h(x,y)| \leq M$ for all (x,y) in \mathbb{R}^2 , then h is identically zero.

A4 Prove that for each positive integer n, the number $10^{10^{10^n}} + 10^{10^n} + 10^n - 1$ is not prime.

A5 Let G be a group, with operation *. Suppose that

- (i) G is a subset of \mathbb{R}^3 (but * need not be related to addition of vectors);
- (ii) For each $\mathbf{a}, \mathbf{b} \in G$, either $\mathbf{a} \times \mathbf{b} = \mathbf{a} * \mathbf{b}$ or $\mathbf{a} \times \mathbf{b} = \mathbf{0}$ (or both), where \times is the usual cross product in \mathbb{R}^3 .

Prove that $\mathbf{a} \times \mathbf{b} = \mathbf{0}$ for all $\mathbf{a}, \mathbf{b} \in G$.

A6 Let $f:[0:\infty)\to\mathbb{R}$ be a strictly decreasing continuous functions such that $\lim_{x\to\infty}f(x)=0$. Prove that $\int_0^\infty \frac{f(x)-f(x+1)}{f(x)}\,dx$ diverges.

B1 Is there an infinite sequence of real numbers a_1, a_2, a_3, \ldots such that

$$a_1^m + a_2^m + a_3^m + \dots = m$$

for every positive integer m?

- B2 Given that A, B, and C are noncollinear points in the plane with integer coordinates such that the distances AB, AC, and BC are integers, what is the smallest possible value of AB?
- B3 There are 2010 boxes labeled $B_1, B_2, \ldots, B_{2010}$, and 2010n balls have been distributed among them, for some positive integer n. You may redistribute the balls by a sequence of moves, each of which consists of choosing an i and moving exactly i balls from box B_i into any one other box. For which values of n is it possible to reach the distribution with exactly n balls in each box, regardless of the initial distribution of balls?
- B4 Find all pairs of polynomials p(x) and q(x) with real coefficients for which

$$p(x)q(x+1) - p(x+1)q(x) = 1.$$

- B5 Is there a strictly increasing function $f : \mathbb{R} \to \mathbb{R}$ such that f'(x) = f(f(x)) for all x?
- B6 Let A be an $n \times n$ matrix of real numbers for some $n \geq 1$. For each positive integer k, let $A^{[k]}$ be the matrix obtained by raising each entry to the kth power. Show that if $A^k = A^{[k]}$ for $k = 1, 2, \cdots, n+1$, then $A^k = A^{[k]}$ for all $k \geq 1$.