The 74th William Lowell Putnam Mathematical Competition Sunday, 8 December 2013 Exam B

B1 For positive integers n, let the numbers c(n) be determined by the rules c(1) = 1, c(2n) = c(n), and $c(2n+1) = (-1)^n c(n)$. Find the value of

$$\sum_{n=1}^{2013} c(n)c(n+2).$$

B2 Let $C = \bigcup_{N=1}^{\infty} C_N$, where C_N denotes the set of 'cosine polynomials' of the form

$$f(x) = 1 + \sum_{n=1}^{N} a_n \cos(2\pi nx)$$

for which:

- (i) $f(x) \ge 0$ for all real x, and
- (ii) $a_n = 0$ whenever n is a multiple of 3.

Determine the maximum value of f(0) as f ranges through C, and prove that this maximum is attained.

B3 Let P be a nonempty collections of subsets of $\{1, \ldots, n\}$ such that:

- (i) if $S, S' \in P$, then $S \cup S' \in P$ and $S \cap S' \in P$, and
- (ii) if $S \in P$ and $S \neq \emptyset$, then there is a subset $T \in S$ such that $T \in P$ and T contains exactly one fewer element than S.

Suppose that $f: P \to \mathbb{R}$ is a function such that $f(\emptyset) = 0$ and

$$f(S \cup S') = f(S) + f(S') - f(S \cap S')$$
 for all $S, S' \in P$.

Must there exist real numbers f_1, \ldots, f_n such that

$$f(S) = \sum_{i \in S} f_i$$

for every $S \in P$?

B4 For any continuous real-valued function f defined on the interval [0,1], let

$$\mu(f) = \int_0^1 f(x) \, dx, \operatorname{Var}(f) = \int_0^1 (f(x) - \mu(f))^2 \, dx, M(f) = \max_{0 \le x \le 1} |f(x)|.$$

Show that if f and g are continuous real-valued functions defined on the interval [0,1], then

$$Var(fq) < 2Var(f)M(q)^{2} + 2Var(q)M * f)^{2}.$$

B5 Let $X = \{1, 2, ..., n\}$, and let $k \in X$. Show that there are exactly $k \cdot n^{n-1}$ functions $f: X \to X$ such that for every $x \in X$ there is a $j \ge 0$ such that $f^{(j)}(x) \le k$.

[Here $f^{(j)}$ denotes that jth iterate of f, so that $f^{(0)}(x) = x$ and $f^{(j+1)}(x) = f(f^{(j)}(x))$.]

- B6 Let $n \ge 1$ be an odd integer. Alice and Bob play the following game, taking alternating turns, with Alice playing first. The playing area consists of n spaces, arranged in a line. At each turn, a player either
 - places a stone in an empty space, or
 - removes a stone from a nonempty space s, places a stone in the nearest empty space to the left of s (if such a space exists), and places a stone in the nearest empty space to the right of s (if such a space exists).

Furthermore, a move is permitted only if the resulting position has not occurred previously in the game. A player loses if he or she is unable to move. Assuming that both players play optimally throughout the game, what moves may Alice make on her first turn?

© 2013 The Mathematical Association of America The web site of Putnam Competition in Ukraine is http://putnam.ho.ua/putnam.html The problems are CONFIDENTIAL till Monday, 9 December 2013